Free Fall

Near the surface of the earth, all bodies fall
with the same constant acceleration. The
distance a body falls after it is released
from rest is a constant multiple of the
square of the time fallen. At least, that is
what happens when a body falls in a
vacuum, where there is no air to slow it
down. The square-of-time rule also holds
for dense, heavy objects like rocks, ball
bearings, and steel tools during the first
few seconds of fall through air, before the
velocity builds up to where air resistance
begins to matter. When air resistance is
absent or insignificant and the only force
acting on a falling body is the force of gravity,
we call the way the body falls free fall.
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CHAPTER 2 [le}

The concept of limit is one of the fundamental building blocks of calculus, enabling us
to describe with precision how change in one variable affects change in another variable.

In this chapter, we show how to define and calculate limits of function values. The
calculation rules are straightforward, and most of the limits we need can be found by sub-
stitution, graphical investigation, numerical approximation, algebra, or some combination
of these.

One of the uses of limits lies in building a careful definition of continuity. Continuous
functions arise frequently in scientific work because they model such an enormous range
of natural behavior and because they have special mathematical properties.

Average and Instantaneous Speed

The average speed of a moving body during an interval of time is found by dividing the
change in distance or position by the change in time. More precisely, if y = f(z) is a
distance or position function of a moving body at time 7, then the average rate of change
(or average speed) is the ratio

Ay _ f(z + Ar) — f(2)
At At ’

where the elapsed time is the interval from ¢ to r + At, or simply Af, and the distance
traveled during this time interval is f(# + Az) — f(¢). Itis also common to use the letter
h instead of At to denote the elapsed time, in which case the average rate of change can
be written

Ay  f(r + h) — f(¢)
Ar h '

EXAMPLE 1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed during the
first 2 seconds of fall?

SOLUTION

Experiments show that a dense solid object dropped from rest to fall freely near the
surface of the earth will fall

\ y= 1612

feet in the first ¢ seconds. The average speed of the rock over any given time interval is
the distance traveled, Ay, divided by the length of the interval At. For the first 2 sec-
onds of fall, from t = O to ¢ = 2, we have

Ay 16(2)? — 16(0)? . ft

A7 -0 32 oo Now Try Exercise 1.

The speed of a falling rock is always increasing. If we know the position as a function
of time, we can calculate average speed over any given interval of time. But we can also
talk about its instantaneous speed or instantaneous rate of change, the speed at one
instant of time. As we will see after the next example, we need the idea of limit to make
precise what we mean by instantaneous rate of change.
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At 2
Lcngth of Average Speed
Time Interval, for Interval

h (sec) Ay/ At (ft/sec)
1 80
0.1 65.6
0.01 64.16
0.001 64.016
0.0001 64.0016
0.00001 64.00016

Formal Definition of Limit

The formal definition of a limit is given in
Appendix A, pp. 583-589. This appendix
also illustrates how the formal definition is
applied and how it leads to the Properties
of Limits given in Theorem 1.

warN

[-27r, 2] by [-1, 2]
(@

X |
=3 98507
-2 | 9335
-1 .89833
0 ERAOR
f.‘lr- '9.983_3
e .899335

) .88507
Y18 sin(X)/X
®)

Figure 2.1 (a) A graph and (b) table of
values for f(x) = (sinx)/x that suggest
the limit of f as x approaches 0 is 1.

EXAMPLE 2 Finding an Instantaneous Speed
Find the speed of the rock in Example 1 at the instant ¢t = 2.

SOLUTION

We can calculate the average speed of the rock over the interval from time ¢ = 2 to
any slightly later time't = 2 + h as

Ay 162 + h) — 16(2)?
At h '

M

We cannot use this formula to calculate the speed at the exact instant t = 2 because
that would require taking 2 = 0, and 0/0 is undefined. However, we can get a good
idea of what is happening at # = 2 by evaluating the formula at values of 4 close to 0.
When we do, we see a clear pattern (Table 2.1). As / approaches 0, the average speed
approaches the limiting value 64 ft/sec. i

If we expand the numerator of Equation 1 and simplify, we find that
Ay 16(2 + h)? — 16(2)2 _16(4 + 4h + h?) — 64
Ar h B h

64k + 16h?
h

=64 + 16h

For values of % different from 0, the expressions on the right and left are equivalent
and the average speed is 64 + 16A ft/sec. We can now see why the average speed has

the limiting value 64 + 16(0) = 64 ft/sec as h approaches 0.  Now Try Exercise 3. -

Definition of Limit
As in the preceding example, most limits of interest in the real world can be viewed as
numerical limits of values of functions. And this is where a graphing utility and calculns
come in. A calculator can suggest the limits, and calculus can give the mathematics for =
confirming the limits analytically.

Limits give us a language for describing how the outputs of a function behave as the
inputs approach some particular value. In Example 2, the average speed was not defined
at & = 0 but approached the limit 64 as / approached 0. We were able to see this numeri-
cally and to confirm it algebraically by eliminating 4 from the denominator. But we cannot
always do that. For instance, we can see both graphically and numerically (Figure 2.1) that
the values of f(x) = (sinx)/x approach 1 as x approaches 0.

We cannot eliminate the x from the denominator.of (sinx)/x to confirm the observa-
tion algebraically. We need to use a theorem about limits to make that confirmation, as
you will see in Exercise 77.

The sentence lim,—, . f(x) = Lisread, “The limit of f of x as x approaches c equals L.”
The notation means that we can fdgce f(x) to be as close to L as we wish simply by
restricting the distance between x and c, but not allowing x to equal c.

We saw in Example 2 that lim, ¢ (64 + 16k) = 64.

As suggested in Figure 2.1,

lim L 1.
x—0 X

Because we need to distinguish between what happens at ¢ and what happens near c,
the value or existence of the limit as x — ¢ never depends on how the function may
or may not be defined at c. This is illustrated in Figure 2.2. The function f has limit 2
as x — 1 even though f is not defined at 1. The function g has limit 2 as x — 1 even
though g(1) # 2. The function A is the only one whose limit as x — 1 equals its value
atx = 1.
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I
/1 0 1 1 /1 0 1

¥ =1 xx1
(b) gxy=4 x-1 ©) h(x)=x+1
1

@ f = 221
x-1

Figure 2.2 lirr} flx) = liml g(x) = hm h(x) = 2.
x— x—

Properties of Limits

By applying six basic facts about limits, we can calculate many unfamiliar limits from
limits we already know. For instance, from knowing that

and

lim (k) = k Limit of the function with constant value k
x—>c

lim (x) = ¢, Limit of the identity function at x = ¢
Xx—>c

we can calculate the limits of all polynomial and rational functions. The facts are listed
in Theorem 1.

THEOREM 1  Properties of Limits

If L, M, c, and k are teal numbers and

1.

lim f(x) =L and lim g(x) = M, then
x=>c X—*C

Sum Rule: lim (fx) +gx))=L+M
' The limit of the-su‘mlof. two fu‘nc:ioris is the-sum of their limits.
Dzﬁ“erence Rule o i hm (Ff(x) —gx)=L-M
The limit of the dlfference of fwo functions is the difference of their limits.
Product Rule: A lim (flx)-gx))=L-M
The limit of a product of two funcxti_o;s‘ is the product of their limits.
Constant Multiple Rule: lim (k- f(x))=k-L
The limit of a cOnsta’:fﬁx’ﬂes a‘fu‘nctiox: is'?:he constant times the limit of the function.
. x
Quotient Rule: lim :EA; Al'; M#0

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

continued
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Using Analytic Methods

We remind the student that unless other-
wise stated all examples and exercises are
to be done using analytic algebraic meth-
ods without the use of graphing calculators
or computer algebra systems.

6. Power Rule: If r and s are integers, s # 0, then
lim (f(x))7* = L
xX—>c
provided that I'/5 is a real number and L > 0 if s is even.

The limnit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number and L > 0 if 5 is even.

Here are some examples of how Theorem 1 can be used to find limits of polynomial §
and rational functions. ol

EXAMPLE 3 Using Properties of Limits

Use the observations lim,_,. k = k and lim,_,, x = ¢, and the properties of limits to
find the following limits.

4 2
x*+xc -1
a) lim (x3 + 4x2 -3 b) lim —————
()x—>c( ) ()x—>c x2+5
SOLUTION d‘
(@) lim (x* + 4x* = 3) = lim x3 + lim 4x2 — lim 3  Sum and Difference Rules L
x—>c x—>c x—>c x—>c 1‘
=3+ 4c2 -3 Product and Constant
Multiple Rules

s = =

g 4 2 8
x+x2-1 il;r’rt(x +xt-1) _
= Quotient Rule

(b) im

= x*+5  lim (x* +5)
x—c

lim x* + lim x2 — lim 1 .
X=2C X==2C X—=2( |
= = . Sum and Difference Rules !
lim x2 + lim 5 |
x—c x—>c |
citer -1 Product Rul |

= roauc ule
¢2+5 |

Now Try Exercises 5 and 6.

Example 3 shows the remarkable strength of Theorem 1. From the two simple observa-
tions that lim,_,, k = k and lim,—,. x = ¢, we can immediately work our way to limits of
polynomial functions and most rational functions using substitution.

\

THEOREM 2 Polynomial and Rational Functions
- IE F(x) = dnd? Arayssxts PgintE +.ay is any polynomial function and c is any
real number, then '

lim f(x) = f(c) = a,c" + an—lcn_l + -+ + ap.
x—c

2. If f(x) and g(x) are polynomials,and c is any real number, then

&) _ #e)

im = , provided that g(¢) # 0.
It . ge) & 8(e)
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EXAMPLE 4 Using Theorem 2
(a) h'_I_}l3 [(x2(2—=x)] =(3)X(2—-3)=-9

Cox24+ 2 +4 (2)2+22)+4 12
(b) lim = —===3
=2 x+2 2+2 4

Now Try Exercises 9 and 11.

[~m, 7} by {-3, 3]
.3 The graph of
f(x) = (tanx)/x

‘that f(x) — lasx — 0.
Exiniple 5)

As with polynomials, limits of many familiar functions can be found by substitution
at points where they are defined. This includes trigonometric functions, exponential and
logarithmic functions, and composites of these functions. Feel free to use these properties.

EXAMPLE 5 Using the Product Rule
an x

. Lt
Determine lim ——.
x—0 X

SOLUTION

The graph of f(x) = (tanx)/x in Figure 2.3 suggests that the limit exists and is about 1.
Using the analytic result of Exercise 77, we have '

. tanx . sin x 1 i
hm——=hm<——' ) tan x = —nX
x—0

=0 X x COS X Cos ¥
. sinx
= lim — - lim Product Rule
x—0 X x—>0 COS X
_ I 1 1
cos 0 1

Now Try Exercise 33.

{1 O Y (51 ) Y |

I L L L LR L

Sometimes we can use a graph to discover that limits do not exist, as illustrated by
Example 6.

EXAMPLE 6 Exploring a Nonexistent Limit
Use a graph to explore whether

exists.

SOLUTION

Notice that the denominator is 0 when x is replaced by 2, so we cannot use substitution
to determine the limit. The graph in Figure 2.4 of f(x) = (x® — 1)/(x — 2) strongly
suggests that as x — 2 from either side, the absolute values of the function values get
very large. This, in turn, suggests that the limit does not exist.

Now Try Exercise 35.

[-10, 10] by [-100, 100}
._ 4 The graph of

f(x) = (2 — 1)/(x — 2).
le 6)

One-Sided and Two-Sided Limits

Sometimes we need to distinguish between what happens to the function just to the right
of ¢ and just to the left. To do this, we call the limit of f as x approaches ¢ from the right
the right-hand limit of f at ¢ and the limit as x approaches ¢ from the left the left-hand
limit of f at c. Here is the notation we use:

right-hand: xl_i)r?" f(x)  The limit of f as x approaches c from the right.

left-hand: lim f(x) The limit of f as x approaches c from the left.
x—>c
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Y EXAMPLE 7 Function Values Approach Two Numbers
p | The greatest integer function f(x) = int x has different right-hand and left-hand limits
i at each integer, as we can see in Figure 2.5. For example,
3 . lim intx =3 and lim intx = 2.
x—3* x—3"
2r ? The limit of int x as x approaches an integer n from the right is n, while the limit as x
1 e—p approaches » from the leftis n — 1. Now Try Exercises 37 and 38,

The greatest integer function, which appears as int x on most calculators, is known to
P— mathematicians as the floor function, written | x J » where we use only the bottom horizon-
tal parts of the brackets to indicate that we go down until we reach an integer. You should
be able to recognize and use either notation.

We sometimes call lim, . f(x) the two-sided limit of f at c to distinguish it from the one-

Figure 25 At each integer, the greatest sided right-hand and left-hand limits of f at c. Theorem 3 shows how these limits are related.
integer function y = int x has different

right-hand and left-hand limits. (Example 7)

THEOREM 3  One-Sided and Two-Sided Limits

A function f(x) has a limit as x approaches c if and only if the right-hand and left-

On the Far Side

If fis not defined to the left of x = c, hand limits at ¢ exist and are equal. In symbols, :
then fdoes not have a left-hand limit at c.
Similarly, if fis not defined to the right of lim f(x) =L < lim f(x) =L and lim f(x) = L.
x = ¢, then fdoes not have a right-hand Xi=vc b *pe
limit at c.
Y Thus, the greatest integer function f(x) = int x of Example 7 does not have a limit as
r x — 3 even though each one-sided limit exists.
2 @ y=f(x)
’—‘/\ EXAMPLE 8 Exploring Right- and Left-Hand Limits
1'\ All the following statements about the function ¥ = f(x) graphed in Figure 2.6 are true.
| | | | - Atx = 0: lim, flx) =1
0 1 2 3 4 it
Atx =1: lim f(x) = 0even though f(1) = 1,
Figure 2.6 The graph of the function *=>1"
lim f(x) =1,
-x+1, 0=x<l1 1Y
1, l=x<?2 f has no limit as x — 1. (The right- and left-hand limits at 1 are not equal,
fx) =42 v =2 so lim,_,; f(x) does not exist.)
x=1, 2<x=3 Atx = 2; ].inzl_f(x)=1,
—x+5, 3<x<4 L
! * lim, f(x) = 1,
(Example 8) x=2*
Iiné f(x) = 1even though f(2) = 2.
y

\
Atx=3: lim f(x) = lim f(x) =2 = f(3) = lim £(x).

h
X N /j Atx = 4: xli)lg_ flx) =1.
g

[ ‘}—/-/ ‘ At noninteger values of ¢ between 0 and 4, f has alimitas x — c.

Now Try Exercise 43.

0 4 " Squeeze Theorem
Figure 2.7 Squeezing f between g and If we cannot find a limit directly, we may be able to find it indirectly with the Squeeze
h creates a bottleneck around the point Theorem. The theorem refers to a function f whose values are squeezed between the values
(¢, L). If we keep x close to c, the bottle- of two other functions, g and A. If & and h have the same limit as x — ¢, then f has that
neck forces f(x) to be close to L. limit too, as suggested by Figure 2.7.
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THEOREM 4 The Squeeze Theorem

If g(x) = f(x) =°h(x) forall x # c in some interval about c, and

then

SOLUTION

and

Because lin(1) (—x?)
= feware

- [-0.2,0.2] by [-0.02, 0.02]

8 The graphs of y, = x2,
n(1/x), and y; = —x2 Notice
¥ =y, = y. (Example 9)

The graphs in Figure 2.8 support this result.

tise numbers with a gray background indicate problems that the
‘have designed to be solved without a calculator.

sises 1-4, find f(2).

=23 - 5x2+ 40
=4,\:2—5£
B+4 12

*sin( x)o
= -
2

3x— 1, Jc<21
= 1
2 _

% x=23

“ection 2.1 Exercises

Cises 14, an object dropped from rest from the top of a tall
alls y = 16¢2 feet in the first ¢ seconds.

d the average speed during the first 3 seconds of fall. 48 ft/sec
-J the average speed during the first 4 seconds of fall. 64 ft/sec

=

lim g(x) = lim A(x) = L,
X—>c xX—>c

lim f(x) = L.

EXAMPLE 9 Using the Squeeze Theorem
Show that l'm}) [x%sin(1/x)] = 0.
x—>

We know that the values of the sine function lie between —1 and 1. So, it follows that

x2 = |x? - = |x? -1 =x?

.1
sin —
x

.1
sin —
X

2 2

2 1
—Xx“ = x°sln— = x“.
b 4

= lim x2 = 0, the Squeeze Theorem gives

x—0
(x2 sin l) = Q.
x

lim

x—0

Now Try Exercise 65.

In Exercises 5-8, write the inequality in the form @ < x < b.
0Bl|x| <4-4<x<4

'r_iéj |x| < ¢? =2 <x<e?

[x—2] <3 -t<x<5

[x—c|<d?c—-d® <x<c+d®

In Exercises 9 and 10, write the fraction in reduced form.

e 2 =]
:'_Zi‘g:«x———f 3 = x—6
X
o
r:i-ﬁ,’ £X X X

ot g —1 x+ 1

. Find the speed of the object at t = 3 seconds and confirm your
answer algebraically. 96 ft/sec

4. Find the speed of the object at ¢ = 4 seconds and confirm your
answer algebraically. 128 ft/sec
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In Exercises 5 and 6, use lim,_,. k = k, lim,_..x = ¢, and the prop-
erties of limits to find the limit.

¢ Bilim (23 —3x2+x—1) 27 -3 +c -1

x—c
e 0 B s |
x2+9 c? +9

6. lim

Yo s X=>C

In Exercises 7-14, determine the limit by substitution.
3

; 2 N
7. 11rn23x (2x — 1) 5

x——1/

8. lim (x + 3)%1¢ 4
x——d4

¥ +5+6

10. lim =y,

y—=2

lim (x3 + 3x%2 — 2x — 17) —15

x—1]

®9,

. Y+ +3 .
11. lim —_——— 12. lim intx 0
y—>-3  y-=3 x—1/2
¥13. lim (x — 6)*° 4 14. lim Vx+3 Vs
x—>— X=>

In Exercises 15-20, complete the following tables and state what you
believe lim,_. f(x) to be.

@ -0.1 —0.01 -0.001 —0.0001
f(x) ? 2 ? ?
(b) 4 0.1 0.01  0.001 0.0001
f(x) ? ? ? 7
. X%+ 6x +2 xt—x
15. f(x) = - 16. f(x) = S

1 1
17. f(x) = xsin 18. f(x) = sin~

19, f(x) = L1

20. f(x) = xsin (In |x|)

In Exercises 21-24, explain why you cannot use substitution to

determine the limit. Find the limit if it exists.
Expression not

21. lim Vx — 2 definedatx =—2. 35 4,

Expression not
1 defined at x = 0.

x—=2 There is no limit. +—0 x2 There is no limit.
Expression not (4 + x)2 - 16
) 23. lim — defined at x = 0. 24, lim ——
=0 X There is no limit. 4

x—0 b
Expression not defined at x = 0. Limit = 8.

In Exercises 25-34, explore the limit graphically. Confirm algebra-
ically.

Cox—11 =3+ 21
B lmEo12 A R R
S5x3 + 8x% 1 e -1
27. lim——————= 28. 1i =
’ £S03xF — 1652 2 ] 50 x 4
2+x)¥ -8 in 2x
29, 222l =8 30. lim 22 5
x—0 X x—0 X
31, Ii sin x , 32, 1i x + sinx )
4 s PLL - . I ——
» 1—13)2)62 - X XEI(I) X
in2 3 _ 2
33. lim 22 ¢ 34, lim =12 45
x—=0 X =5 x— 85

In Exercises 35 and 36, use a graph to explore whether the limit
exists.

2 — x+1

36. lim —
x—2x° —

« 35, lim =

=l x —

xercises 37-42, determine the limit. _

37} lim intx 0 @Iim intx —1
=0 Tl

39.| lim intx 0 lim intx 1

je—=(1.01 x—2"

41.|tim = 42 lim = -1
=0 |x| =0 |x|

In Hxercises 43 and 44, which of the statements are true about the
fungtion y = f(x) graphed there, and which are false?

e (a) 11)1_’[}+ f(x) =1 True (b) li’n(‘]l_ f(x) =0 True
(d 11%1_ f(x) = ]__i)r{)l+ f(x) True

® li_I)I%J f(x) = 0 True

¢ (¢) xli{rol- f(x) = 1 False
¢ (e) P_rg f(x) exists True
L (® )‘11_1}6 fx) =1 False
L () P_rpl f(x) = 0 False

}.

(h) li_r>nl f(x) =1 False
) ILITZI_ f(x) = 2 False

y=f
2+ °
\1— S S
L\ | L N
1 o]° 1 2 3 *

(a) lir_r}+ f(x) =1 True (b) Iir% f(x) does not exist. False

(c) ]i_.rréf(x) = 2 False (@) anll_ f(x) =2 Tree
(e) .l_i)rr11+ f(x) =1 True
() 1_ig)1+ flx) = ILI%- f(x) True

(h) lilp f(x) exists at every c in (—1, 1). True

®) lirr} f(x) does not exist. True
T

(i) lim f(x) exists at every cin (1,3). True
x—c

35. Answers will vary. One possible graph is given by the window
[—4.7,4.7] by [—15,15] with Xscl = 1 and Yscl = 5.

36. Answers will vary. One possible graph is given by the window
[-4.7,4.7] by [—15, 15] with Xscl = 1 and Yscl = 5.




s 45-50, use the graph to estimate the limits and value of
on, or explain why the limits do not exist.

(@ lim f(x) 3

7pd :_ [

(b) 1_1)1131+ f(x) —2

:-=c‘ g f.—m—

(c) h_rg f(x) No limit

.1L1_HL11L'1"|

@ £(3) 1

W] @ lm g(0)s

(®) lim g(r) 2

i11ﬂ&1\\
S
i

(© Iim4 g(t) No limit
==

|

{
L

o

(d)g(—4) 2

5 (@) lim f(h) —4

|_]

i
]
=)

/4 (b lim, f(k) ~4

-1
|

© lim f(h) ~4

I (d) £(0) —4

¥ | (a) lim p(s) 3

s—=>—2"

7 ®) lim p(s) 3

A1 5 (©) sl_i,n_lzp(s) 3

L)1 (@ p(-2) 3

(a) x]_ig(}_ F(x) 4

(®) lim F(x) -3

(c) lin}) F(x) No limit

(@ F(0) 4

[ i

(a) an21_ G(x) 1

e —
|_.

(b) 1_1)1121+ G(x) 1

(© lim G(x) 1

[~
I 07
]
]
|

@) G(2) 3
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In Exercises 51-54, match the function with the table.

p— x24+x-2 P x2—x-2
BUn="—""7"0 B2y =——7—"®
2—2x+1 arix xX+x—2
@y =T —F "« &4y, = ——
53. y, — () : n P ()

X_|w X |

[7 | | ERE| 7.3667

8 =3 8 108"

9 | -is2s ‘g la6:9.

| o i ERROR

1 782 B -18,8.

1.2 28091 1.2 -B8.8 -

13 RTELTTE! 13 -5.367

X=.7 X207
(a) (b)

X Iwn X v

27 -3

8 2.8 Fagriie |

9 2.9 8 -

i ERROR i ERAOA

11 3.1 11 A

1.2 3.2 1.2 .2

13 3.3 13 3

X=.7 ' X=.7
(c) (d)

In Exercises 55 and 56, determine the limit.

{55, Assume that lim4 f(x) = 0and lin}1 g(x) = 3.
X x—

(@ lim (g(x) +3) 6 (b) lim x f(x) 0

(c) h'_r)r}t gX(x) 9 (d) lim _8x) -3

x—4 f(x) — 1
:ﬁﬁ';tAssume that li_lg f(x) = 7and ]i_l_;r})g(x) = -3,
@) lim (f(x) +g(x)) 4 () liy (f(x) - g(x)) -2

flx) 7

(© lim 4 g(x) ~12 @ lim s 3

In Exercises 57—60, complete parts (a), (b), and (c) for the piecewise-
defined function.

(a) Draw the graph of f.

(b) Determine lim,_, .+ f(x) and lim,, - f(x).

(c) Writing to Learn Does lim,—,, f(x) exist? If so, what is it?

If not, explain.
(b) Right-hand: 2 Left-hand: 1

! 3-x x<2 (c) No, because the two one-sided
57.¢c =2, f(x) = X +1, x>2 limits are different
2
3 - < (b) Right-hand: 1 Left-hand: 1
=% X<2 (&) Yes. The limitis 1.
58.c =2, f(x) =42, x=2
x/2, x>2
(b) Right-hand: 4
1 Left-hand: no limit
x<1

(¢) No, because the left-
hand limit doesn’t exist

59.c=1,f(x)=4*x— L
x3—2x+5 =x=1
(b) Right-hand: 0
{1 —x2, x# —1 Left-hand: 0

60.c =1, f(x) = _1 (b) Yes. The limit is 0.

2, x =




68 Chapter 2 Limits and Continuity

In Exercises 61-64, complete parts (a)—(d) for the piecewise-defined
function.

(a) Draw the graph of f.

(b) At what points ¢ in the domain of f does lim,_,. f(x) exist?
(c) At what points ¢ does‘ 'only the left-hand limit exist?

(d) At what points ¢ does only the right-hand limit exist?

P sinx, —2r < x < 0® (=27, 0)U(0,27)
afx) = {cos x, Sn=0y Qc=%m e ="=2r

o o
s secx, O0=x= ©c=m @c=—7
1 - x2, 0=<x<1®™O1)U(L2)
OB 1=x<2©@072 @e=0
2, =2
x, —-l=x<00or0<x=1

B4 f(x) =51, x=0 (b) (—o0,—1) U (=1,1) U (1,00)
0, x<—1,orx > 1(c) None (d)None

In Exercises 65-68, find the limit graphically. Use the Squeeze
Theorem to confirm your answer.

65. lim xsinx 0 66. lim x2sinx 0
x—0 x—0

1 1
67. lim x%sin = 0 68. lim x2 cos — 0
X x—0 . X

x—0

@I Free Fall A water balloon dropped from a window high
above the ground falls y = 4.9¢2 m in ¢ sec. Find the balloon’s

(a) average speed during the first 3 sec of fall. 14.7 m/sec
(b) speed at the instant r = 3. 29.4 m/sec

{70} Free Fall on a Small Airless Planet A rock released from
rest to fall on a small airless planet falls y = gt2min ¢ sec, g a
constant. Suppose that the rock falls to the bottom of a crevasse

20 m below and reaches the bottom in 4 sec.
(a) Find the value of g. ¢ = %
(b) Find the average speed for the fall. 5 m/sec

(c) With what speed did the rock hit the bottom? 10 m/sec

Standardized Test Questions
@A True or False If lim f(x) = 2 and lim_f(x) = 2, then

lim f(x) = 2. Justify your answer. True. Definition of limit.
xX=>cC

x + sinx

@:},}True or False Iirr(l) = 2. Justify your answer.
X

In Exercises 73-76, use the following function.
2—x, x=1

=121 o>

73} Multiple Choice What is the value of lim,_, - f(x)? C
(A) 5/2 B)3/2 (C)1 (D)0 (E) does not exist
%Multiple Choice What is the value of lim,_,+ f(x)? B
(A)5/2 B)3/2 (€)1 (D) 0 (E) does not exist

o 3 . .
72. True. [irr:) (x St x> = lim (1 + Slﬁ) =1+ lim LT 2
== X

X =0 =0 X

77. Because the right-hand limit at zero depends only on the values of the
___function for positive x-values near zero

(75. Multiple Choice What is the value of lim,,, f(x)? E
(A) 5/2 B)3/2 (C©)1 (D)0 (E) does not exist
#2682 Multiple Choice What is the value of £(1)? C
(A) 5/2 B)3/2 (CO)1 (D)0 (E) doesnot exist

77. Group Activity To prove that limy—,( (sin 8)/6 = 1 when
0 is measured in radians, the plan is to show that the right- and
left-hand limits are both 1.

(a) To show that the right-hand limit is 1, explain why we can
restrict our attention to 0 < 6 < /2.

(b) Use the figure to show that

area of AOAP = —sin 8,
area of sector OAP =

El

area of AOAT = —tan 6.

R N D[~

1
Use: area of triangle = (5) (base)(height)
y (angle)(radius )?

i area of circular sector = 5
T
1
\P
tan 6
1
sin @
6
cos 8 ] L Ll_’ .
o Qo A(1,0)

This is how the areas of the three regions compare.
(c) Use part (b) and the figure to show that for 0 < 6 < 7/2,

1sim‘) < l{) << ltano
2 2 2 ’
(d) Show that for 0 < 6 < 7r/2 the inequality of part (c) can be
written in the form
6 1 Multiply by 2 and
b= sin 0 = cos §  divide by sin 6.

¢e) Show that for 0 < 6 < /2 the inequality of part (d) can be
written in the form

Take reciprocals, rememberii

sin
cos @ < —— < 1. that all of the values involve:
o are positive.
(f) Use the Squeeze Theorem to show that
sin 6
— =1

m
-0t @

The limits for cos 6 and 1 are both equal to 1. Since sl is
between them, it must also have a limit of 1.




show that (sin 6)/6 is an even function.
¢ part (g) to show that

ending the Ideas
W Pontrolling Outputs Let f(x) = V/3x — 2

8 < f(x) < 22 provideda <x < b.

99 < f(x) < 2.01 provideda < x < b.
" One possible answer: a = 1.99,5 = 2.01
—sin (@) sin (8)

Sin (—9)

two one-sided limits both exist and are equal to 1.

5N

: . The limit can be found
“Show that lim,— f(x) = 2 = f(2). by substitution. ,
Use a graph to estimate values for a and b so that
One possible answer:
a= 1.75,b =228
s¢ a graph to estimate values for a and b so that

= 0
“the function is symmetric about the y-axis, and the right-hand limit
&0 s 1, then the left-hand limit at zero must also be 1.

Section 2.1 Rates of Change and Limits 69

79. Controlling Outputs Let f(x) = sinx.

(a) Find f(7/6). f(%) = %

(b) Use a graph to estimate an interval (a, b) about x = /6 so
that 0.3 < f(x) < 0.7 provided a < x < b.
(¢) Use a graph to estimate an interval (a, b) about x = 7 /6 so

that 0.49 < f(x) < 0.51 provideda < x < b.

80. Limits and Geometry Let P(a, a?) be a point on the
parabola y = x2,a > 0. Let O be the origin and (0, b) the
y-intercept of the perpendicular bisector of line segment OP.
Find limp-—.o b. l

2
79. (b) One possible answer: a = 0.305,b = 0.775
(¢) One possible answer: a = 0.513,b = 0.535




